Confidence intervals

- consider SAT scores (math+verbal) with normal distribution having mean $\mu = 1026$ and standard deviation $\sigma = 209$
- for SRSs of size n = 100, sample means \bar{x} have normal distribution with

mean
$$\mu_{\bar{x}} = \mu = 1026$$

standard deviation $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = 20.9$

• 95% of all sample means \bar{x} fall within $2\sigma_{\bar{x}} = 2(20.9) = 41.8$ of $\mu_{\bar{x}} = 1026$

- since $\mu_{\bar{x}} = \mu = 1026$, we can say that 95% of all sample means \bar{x} fall within $2\sigma_{\bar{x}} = 41.8$ of the population mean μ
- so, μ is within $2\sigma_{\bar{x}} = 41.8$ of 95% of all possible values of \bar{x}
- now think about all of the intervals of the form $[\bar{x} - 2\sigma_{\bar{x}}, \bar{x} + 2\sigma_{\bar{x}}] = [\bar{x} - 41.8, \bar{x} + 41.8]$ or $\bar{x} \pm 41.8$
- μ must fall into 95% of these intervals
- \bullet these intervals are called 95% $confidence\ intervals$
- in practice,
 - select one SRS
 - measure to get *one* sample mean
 - construct *one* confidence interval
 - report that confidence interval

- want information on value of a mean μ for a population
- select a SRS of size n and measure sample mean \bar{x}
- suppose sample means are normally distributed with mean $\mu_{\bar{x}}$ and standard deviation $\sigma_{\bar{x}}$
 - -95% of all sample means \bar{x} fall within $2\sigma_{\bar{x}}$ of $\mu_{\bar{x}}$
 - since $\mu_{\bar{x}} = \mu$, we can say that 95% of all sample means \bar{x} fall within $2\sigma_{\bar{x}}$ of the population mean μ
 - so, μ is within $2\sigma_{\bar{x}}$ of 95% of all possible values of \bar{x}
- now think about all of the intervals of the form $[\bar{x} 2\sigma_{\bar{x}}, \bar{x} + 2\sigma_{\bar{x}}]$
 - $-~\mu$ must fall into 95% of these intervals
 - these intervals are called 95% confidence intervals
- for any one SRS with \bar{x} , it is tempting to say that there is probability 95% that the interval $[\bar{x} - 2\sigma_{\bar{x}}, \bar{x} + 2\sigma_{\bar{x}}]$ contains μ
- but, for any one SRS with \bar{x} , the 95% confidence interval $[\bar{x} 2\sigma_{\bar{x}}, \bar{x} + 2\sigma_{\bar{x}}]$ either contains μ or does not contain μ so no probability statement applies
- a probability statement does apply to the random process of selecting a SRS, measuring to get \bar{x} , and then constructing the interval $[\bar{x} 2\sigma_{\bar{x}}, \bar{x} + 2\sigma_{\bar{x}}]$
- so, we can say that a 95% confidence interval $[\bar{x} 2\sigma_{\bar{x}}, \bar{x} + 2\sigma_{\bar{x}}]$ is produced by a process that has probability 95% of producing an interval containing the true population mean μ

• constructing a a confidence interval for a population mean (when the population standard deviation is known)

- choose a *confidence level* C

Example: C = 95% = 0.95

– determine the z-score z^{\star} for that confidence level

Example: for C = 95% = 0.95, have $z^{\star} = 2$

- choose a sample size n

Example:
$$n = 100$$

– compute the standard deviation $\sigma_{\bar{x}}$

Example:
$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{209}{\sqrt{100}} = 20.9$$

- compute the margin of error $m = z^* \sigma_{\bar{x}}$

Example: $m = z^* \sigma_{\bar{x}} = 2(20.9) = 41.8$

– measure to get a specific value for \bar{x}

Example: $\bar{x} = 1050$

- report the confidence interval $\bar{x} \pm m$

Example:
$$\bar{x} \pm m = 1050 \pm 41.8$$
 or

 $[\bar{x} - m, \bar{x} + m] = [1050 - 41.8, 1050 + 41.8] = [1008.2, 1091.8]$

• refinement:

- value of $z^{\star} = 2$ for C = 0.95 comes from 68-95-99.7 rule

- that rule is a convenient approximation
- more precise value for C = 0.95 is $z^* = 1.96$

Example: $m = z^* \sigma_{\bar{x}} = (1.96)(20.9) = 40.96$